Sterile Reverse Osmosis Water Combined with Friction Are Optimal for Channel and Lever Cavity Sample Collection of Flexible Duodenoscopes
نویسندگان
چکیده
Introduction Simulated-use buildup biofilm (BBF) model was used to assess various extraction fluids and friction methods to determine the optimal sample collection method for polytetrafluorethylene channels. In addition, simulated-use testing was performed for the channel and lever cavity of duodenoscopes. Materials and methods BBF was formed in polytetrafluorethylene channels using Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Sterile reverse osmosis (RO) water, and phosphate-buffered saline with and without Tween80 as well as two neutralizing broths (Letheen and Dey-Engley) were each assessed with and without friction. Neutralizer was added immediately after sample collection and samples concentrated using centrifugation. Simulated-use testing was done using TJF-Q180V and JF-140F Olympus duodenoscopes. Results Despite variability in the bacterial CFU in the BBF model, none of the extraction fluids tested were significantly better than RO. Borescope examination showed far less residual material when friction was part of the extraction protocol. The RO for flush-brush-flush (FBF) extraction provided significantly better recovery of E. coli (p = 0.02) from duodenoscope lever cavities compared to the CDC flush method. Discussion and conclusion We recommend RO with friction for FBF extraction of the channel and lever cavity of duodenoscopes. Neutralizer and sample concentration optimize recovery of viable bacteria on culture.
منابع مشابه
Investigation of the Effect of Copolymer Antiscalant on TDS Removal Efficiency in Reverse Osmosis Membrane
Background & objectives: Nowadays, according to membrane-based filtration processes; the use of substances such as antiscalants that prevents the formation of deposits during the treatment process, is very important from industrial point of view. This study aimed to synthesize styrene-maleic anhydride copolymer (PSMA) using the radical polymerization method and to investigate the factors and pa...
متن کاملA numerical study of the effect of channel spacers on the performance of cross-flow forward osmosis membrane modules
In this paper, we perform two-dimensional simulations of cross-flow forward osmosis (FO) membrane modules in the presence of draw and feed channel spacers. For this purpose, the equations corresponding to the conservation of mass, momentum, and convection-diffusion for the mass fraction of solute are solved using a commercial finite volume flow solver. We consider six configurations of channel ...
متن کاملComparison the performance of different reverse osmosis membrane modules by CFD modeling
Reverse osmosis is a commonly used process in water desalination. Due to the scarcity of freshwater resources and wastewater problems, a lot of theory and experimental studies have been conducted to optimize this process. In the present study, the performance of reverse osmosis membrane module of salt–water separation was simulated based on computational fluid dynamics technique and solution-di...
متن کاملVarious Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant
This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...
متن کاملA Novel Photovoltaic Powered Reverse Osmosis with Improved Productivity of Reverse Osmosis and Photovoltaic Panel
With the increasing installed capacity of desalination, the greenhouse gas emission for generating the required energy to power the desalination plants is also becoming the focus of attention in the world community. Domestic reverse osmosis membranes have been very successful technology especially in the developing world to provide safe drinking water. The novel concept of photovoltaic powered ...
متن کامل